S.No. 8048 24DPMA03

(For the candidates admitted from 2024–25 onwards)

M.Sc. DEGREE EXAMINATION, AUGUST 2025

First Semester

Maths

ORDINARY DIFFERENTIAL EQUATIONS

Time: Three hours Maximum: 75 marks

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

Answer ALL questions.

- 1. Find all solutions of the equation y'' + y' 2y = 0.
- 2. State the existence theorem for solutions of a second order initial value problem, with constant coefficients.
- 3. Define Wronskian of *n* functions $\phi_1, \phi_2, \dots \phi_n$.
- 4. Define linearly independent homogeneous equation of order n.
- 5. Write the Riccati equation.
- 6. Find the value of the Legendre polynomial $P_2(x)$.
- 7. Define regular singular point.
- 8. Give a note on indicial equation.
- 9. Find the solution of $y' = 3y^2/3$.
- 10. Define Lipsclitz constant.

PART B —
$$(3 \times 5 = 15 \text{ marks})$$

Answer any THREE questions.

- 11. Let ϕ_1, ϕ_2 be two solutions of L(y) = 0 on an interval I, and let x_0 be any point in *I*. Then show that ϕ_1, ϕ_2 are linearly independent on I if and only if $W(\phi_1, \phi_2)$ $(x_0) \neq 0$.
- 12. Find all real-valued solutions of the equation $y^{(4)} + y = 0$.

- 13. Find the basis for the solution of the equation $y'' \frac{2}{x^2}y = 0$ on $0 < x < \infty$.
- 14. Discuss the Bessel function of zero order of the second kind.
- 15. Prove the equation $y' = \frac{3x^2 2xy}{x^2 2y}$ is exact and solve.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL the questions.

16. (a) Find all solution of the equation $y'' - y' - 2y = e^{-x}$.

Or

- (b) If ϕ_1, ϕ_2 are two solutions of L(y) = 0 on an interval I containing a point x_0 , then show that $W(\phi_1, \phi_2)(x) = e^{-a_1(x-x_0)}W(\phi_1, \phi_2)(x_0)$.
- 17. (a) Let $\phi_1, \dots \phi_n$ be n solutions of L(y) = 0 on an interval I containing a point x_0 . Then prove that, $W(\phi_1, \dots \phi_n)(x) = e^{-a_1(x-x_0)}W(\phi_1, \dots \phi_n)(x_0)$.

Or

- (b) Consider the equation with constant coefficients $L(y) = P(x)e^{ax}$, where P is the polynomial given by $P(x) = b_0 x^m + b_1 x^{m-1} + \cdots + b_m$, $(b_0 \neq 0)$. Suppose a is a root of the characteristic polynomial p of L of multiplicity j. Then prove that there is a unique solution Ψ of $L(y) = P(x)e^{ax}$ of the form $\Psi(x) = x^j (c_0 x^m + c_i x^{m-1} + \cdots + c_m)e^{ax}$, where $c_0, c_1, \cdots c_m$ are constants determined by the annihilator method.
- 18. (a) If $\phi_1 \cdots \phi_n$ are n solutions of L(y) = 0 on an interval J, prove that they are linearly independent there if, and only if, $W(\phi_1, \cdots \phi_n)(x) \neq 0$ for all x in I.

Or

- (b) State and prove the Existence theorem for analytic coefficients.
- 19. (a) Consider the second order Euler equation $x^2y'' + axy' + by = 0$, (a,b) constants) and the polynomial q given by q(r) = r(r-1) + ar + b. Prove that a basis for the solution of the Euler equation on any interval not containing x = 0 is given by $\phi_1(x) = |x|^{r^1}$, $\phi_2(x) = |x|^{r^2}$, in case r_1, r_2 are distinct roots of q, and by $\phi_1(x) = |x|^{r^1}$, $\phi_2(x) = |x|^{r^1} \log |x|$, if r_1 is a root of q of multiplicity two.

Or

- (b) Find the solution of the equation $L(y) = x^2y'' + \frac{3}{2}xy' + xy = 0$, which has a regular singular point at the origin.
- 20. (a) Prove that the successive approximations ϕ_k , defined by $\phi_0(x) = y_0$, exists as continuous function on $J: |x-x_0| \le \alpha = \min imum \left\{ a, \frac{b}{M} \right\}$, and $(x,\phi_k(x))$ is in R for x in I. Indeed, the ϕ_k satisfy $|\phi_k(x)-y_0| \le M |x-x_0|$ for all x in I.

Or

(b) State and prove the existence theorem for convergence of the successive approximation.